Чему равна магнитная сила

Чему равна магнитная сила

Магнитное взаимодействие движущихся электрических зарядов согласно представлениям теории поля объясняется следующим образом: всякий движущийся электрический заряд создает в окружающем пространстве магнитное поле, способное действовать на другие движущиеся электрические заряды.

В — физическая величина, являющаяся силовой характеристикой магнитного поля. Она называется магнитной индукцией (или индукцией магнитного поля).

Магнитная индукция — векторная величина. Модуль вектора магнитной индукции равен отношению максимального значения силы Ампера, действующей на прямой проводник с током, к силе тока в проводнике и его длине:

Единица магнитной индукции. В Международной системе единиц за единицу магнитной индукции принята индукция такого магнитного поля, в котором на каждый метр длины проводника при силе тока 1 А действует максимальная сила Ампера 1 Н. Эта единица называется тесла (сокращенно: Тл), в честь выдающегося югославского физика Н. Тесла:

Движение проводника с током в магнитном поле показывает, что магнитное поле действует на движущиеся электрические заряды. На проводник действует сила Ампера FА = IBlsin a , а сила Лоренца действует на движущийся заряд:

где a — угол между векторами B и v .

Движение заряженных частиц в магнитном поле. В однородном магнитном поле на заряженную частицу, движущуюся со скоростью перпендикулярно линиям индукции магнитного поля, действует силам , постоянная по модулю и направленная перпендикулярно вектору скорости.Под действием магнитной силы частица приобретает ускорение, модуль которого равен:

В однородном магнитном поле эта частица движется по окружности. Радиус кривизны траектории, по которой движется частица, определяется из условияоткуда следует,

Радиус кривизны траектории является величиной постоянной, поскольку сила, перпендикулярная вектору скорости, меняется только ее направление, но не модуль. А это и означает, что данная траектория является окружностью.

Период обращения частицы в однородном магнитном поле равен:

Последнее выражение показывает, что период обращения частицы в однородном магнитном поле не зависит от скорости и радиуса траектории ее движения.

Если напряженность электрического поля равна нулю, то сила Лоренца л равна магнитной силе м :

Явление электромагнитной индукции открыл Фарадей, который установил, что в замкнутом проводящем контуре возникает электрический ток при любом изменении магнитного поля, пронизывающего контур.

Магнитный поток Ф (поток магнитной индукции) через поверхность площадью S — величина, равная произведению модуля вектора магнитной индукции на площадь S и косинус угла а между вектором и нормалью к поверхности:

Ф=BScos

В СИ единица магнитного потока 1 Вебер (Вб) — магнитный поток через поверхность площадью 1 м 2 , расположенную перпендикулярно направлению однородного магнитного поля, индукция которого равна 1 Тл:

Электромагнитная индукция-явление возникновения электрического тока в замкнутом проводящем контуре при любом изменении магнитного потока, пронизывающего контур.

Возникающий в замкнутом контуре, индукционный ток имеет такое направление, что своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван (правило Ленца).

ЗАКОН ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ

Опыты Фарадея показали, что сила индукционного тока Ii в проводящем контуре прямо пропорциональна скорости изменения числа линий магнитной индукции , пронизывающих поверхность, ограниченную этим контуром.

Поэтому сила индукционного тока пропорциональна скорости изменения магнитного потока через поверхность, ограниченную контуром:

Известно, что если в цепи появился ток, это значит, что на свободные заряды проводника действуют сторонние силы. Работа этих сил по перемещению единичного заряда вдоль замкнутого контура называется электродвижущей силой (ЭДС). Найдем ЭДС индукции εi.

По закону Ома для замкнутой цепи

Так как R не зависит от , то

ЭДС индукции совпадает по направлению с индукционным током, а этот ток в соответствии с правилом Ленца направлен так, что созданный им магнитный поток противодействует изменению внешнего магнитного потока.

Читайте также:  Hdmi кабель для apple tv

Закон электромагнитной индукции

ЭДС индукции в замкнутом контуре равна взятой с противоположным знаком скорости изменения магнитного потока, пронизывающего контур:

Опыт показывает, что магнитный поток Ф , связанный с контуром, прямо пропорционален силе тока в этом контуре:

Индуктивность контура L — коэффициент пропорциональности между проходящим по контуру током и созданным им магнитным потоком.

Индуктивность проводника зависит от его формы, размеров и свойств окружающей среды.

Самоиндукция — явление возникновения ЭДС индукции в контуре при изменении магнитного потока, вызванном изменением тока, проходящего через сам контур.

Самоиндукция — частный случай электромагнитной индукции.

Индуктивность — величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока в нем на единицу за единицу времени. В СИ за единицу индуктивности принимают индуктивность такого проводника, в котором при изменении силы тока на 1 А за 1 с возникает ЭДС самоиндукции 1 В. Эта единица называется генри (Гн):

ЭНЕРГИЯ МАГНИТНОГО ПОЛЯ

Явление самоиндукции аналогично явлению инерции. Индуктивность при изменении тока играет ту же роль, что и масса при изменении скорости тела. Аналогом скорости является сила тока.

Значит энергию магнитного поля тока можно считать величиной, подобной кинетической энергии тела :

Предположим, что после отключения катушки от источника,ток в цепи убывает со временем по линейному закону.

ЭДС самоиндукции имеет в этом случае постоянное значение:

где I — начальное значение тока, t — промежуток времени, за который сила тока убывает от I до 0.

За время t в цепи проходит электрический заряд q = Icpt . Так как Icp = (I + 0)/2 = I/2 , то q=It/2 . Поэтому работа электрического тока:

Эта работа совершается за счет энергии магнитного поля катушки. Таким образом, снова получаем:

Пример. Определите энергию магнитного поля катушки, в которой при токе 7,5 А магнитный поток равен 2,3*10 -3 Вб. Как изменится энергия поля, если сила тока уменьшиться вдвое?

Энергия магнитного поля катушки W 1 = LI 1 2 /2. По определению, индуктивность катушки L = Ф/I 1. Следовательно,

Ответ: энергия поля равна 8,6 Дж; при уменьшении тока вдвое она уменьшится в 4 раза.

«Первые опыты по вопросу, рассматриваемому в настоящем труде, связаны с лекциями об электричестве, гальванизме и магнетизме, читанными мною прошедшей зимой» [1].

В ту зиму 1819-1820 гг. электричеством называли силы, действующие между неподвижными зарядами (закон Кулона). К гальванизму же относились те явления, которые наблюдались при движении зарядов, т. е. при наличии тока, а к магнетизму — явления, связанные с такими загадочными предметами, как магниты и стрелки компасов, находящиеся в магнитном поле Земли. Все три вида явлений — считались самостоятельными; хотя многие чувствовали, что между ними должна существовать некая связь, обнаружить ее никому не удавалось. В ту зиму Эрстед занимался тем, что пропускал гальванический ток по проводу, расположенному параллельно небольшой магнитной стрелке, в результате чего он обнаружил (фиг. 299), что:

«В данном случае стрелка изменит свое положение, и полюс, находящийся под той частью соединительной проволоки, которая ближе к отрицательному концу гальванического аппарата отклонится к западу» [2].

Мы видели, что силы, действующие между заряженными частицами, являются чисто ньютоновскими. Кулоновская сила не только подчиняется третьему закону, но и совпадает по форме с гравитационной.

Если бы на кулоновской силе наука кончалась, то в процессе изучения гравитационных сил можно было бы ограничиться небольшой ссылкой на то, что в некоторых случаях сходные силы действуют и между так называемыми заряженными частицами. Величины этих сил различаются: помимо притяжения возможно отталкивание частиц, но в остальном эти силы неразличимы. Однако наука не кончается на силах Кулона. При дальнейшем изучении электрических сил обнаруживается столько разнообразных и тонких эффектов, что мы вынуждены не только расширять пределы применимости ньютоновской системы, но в конце концов выйти за ее рамки.

Читайте также:  Почему петляет нижняя нить в швейной машинке

Открытие Эрстеда возвестило о начале активных исследований в этой области; в течение последующих десяти лет Ампер и Фарадей разработали теорию магнитных взаимодействий токов. Эрстеду удалось не только установить эффект воздействия движущегосязаряда, или тока, на магнитную стрелку, но и обнаружить удивительное свойство этого эффекта: магнитная стрелка устанавливалась перпендикулярно направлению движения тока (фиг. 300).

Более того, оказалось, что в плоскости, перпендикулярной проводу, направления стрелки образуют замкнутые окружности. Это можно проиллюстрировать с помощью простенького опыта, которым любят забавляться дети в дождливые дни. Если насыпать на бумагу мелкие металлические стружки (каждая из которых ведет себя, как маленькая магнитная стрелка), они наглядно передадут конфигурацию поля для различных систем токов (фото 34).

Наиболее удивительная особенность этого открытия, которая отчасти объясняет, почему оно не было сделано ранее, связана с тем, что неподвижный заряд не оказывает никакого воздействия на магнитную стрелку. Чтобы вызвать эффект, который обнаружил Эрстед, необходимо, чтобы заряд пришел в движение. Таким образом, мы впервые встречаемся с силой, которая оказывается зависящей от движения тел, порождающих ее.

Менее чем через год (2 октября 1820 г.) Ампер опубликовал в журнале «Annals of Chemistry and Physics» работу, в которой он установил, что два токонесущих провода взаимодействуют друг с другом. Он

обнаружил, что два провода, по которым текут токи в одном направлении, притягиваются, а два провода, по которым токи текут в противоположные стороны, отталкиваются. Казалось, что эти новые силы существенно отличались от электрических, так как они не зависели от величины нескомпенсированного заряда в проводах.

Фиг. 301. Длинный провод, по которому течет ток притягивает провод длины по которому течет ток

Если имеется очень длинный токонесущий провод и параллельно ему расположен второй провод, как показано на фиг. 301, то первый провод будет притягивать второй, если ток в последнем течет в том же направлении, что и в первом, и, будет отталкивать, если направление тока противоположное. Величина силы зависит от расстояния между проводами, от токов в проводах и от длины второго провода; в системе СГС выражение для силы имеет вид

Здесь — ток в первом проводе, — ток во втором проводе, — длина второго провода и — расстояние между проводами. Буква с, стоящая в знаменателе (20.9), обозначает постоянную:

Она имеет размерность скорости, и сейчас мы знаем, что ее величина совпадает со скоростью света.

Чтобы дать представление о величине силы, которая действует между проводами, положим, что длина второго провода 1 см, отстоит он от первого на расстоянии тоже 1 см, а токи в проводах равны 10 А.

(Для перевода амперов в единицы СГС обратимся к табл. 10: — с единиц СГС, т. е. с статампер.) Подставляя эти величины в (20.9), получаем

Сила 2 дин не очень велика (порядка двух тысячных грамма), однако измерить ее легко. Для сравнения укажем, например, что если в проводе диаметром 0,1 см нескомпенсирован всего лишь один электрон на каждые атомов, то возникает сила 108 дин (порядка на каждый сантиметр провода.

Мы могли бы ожидать, что ток окажет силовое воздействие на движущийся заряд. Именно так и происходит. Сила, действующая на провод, фактически приложена к движущимся зарядам, создающим ток. Она проявляется как сила, приложенная к проводу. С помощью электронной пушки можно наглядно продемонстрировать силу, с которой провод с током действует на пучок заряженных частиц (электронов) (фиг. 302).

Читайте также:  Пластиковые окна в каркасном доме особенности установки

Невооруженным глазом видно, что пучок электронов отклоняется под действием силы, вызванной током, текущим по проводу.

Качественные свойства этой силы оказываются сложными и весьма

необычными. Рассмотрим провод, по которому течет ток (фиг. 303). Если электрон движется в направлении тока сила отклоняет его от провода; если же он движется против тока сила приближает его в проводу. Если направление движения электрона произвольно относительно провода, действующая сила все равно изменяет это направление; однако в любом случае действующая сила будет перпендикулярна скорости электрона (фиг. 304), а ее величина будет прямо пропорциональна этой скорости и обратно пропорциональна расстоянию между проводом и электроном.

Таким образом, мы обнаружили силу, которая зависит не только от положения электрона, но и от его скорости и направления движения. Свойства этой силы гораздо сложнее, чем свойства сил, рассмотренных ранее. Для дальнейшего ее изучения удобно ввести понятие магнитного поля.

Словарь иностранных слов, вошедших в состав русского языка.- Чудинов А.Н. , 1910 .

Смотреть что такое "МАГНИТНАЯ СИЛА" в других словарях:

магнитная сила — сила (действия) магнитного поля — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия Синонимы сила (действия) магнитного… … Справочник технического переводчика

магнитная сила — электромагнитная сила; сила Ампера; пондеромоторная сила; отрасл. магнитная сила Сила, обусловленная взаимодействием магнитного поля и электрического тока и действующая на единицу объёма проводящей среды … Политехнический терминологический толковый словарь

магнитная сила — magnetinė jėga statusas T sritis Standartizacija ir metrologija apibrėžtis Jėga, kuria magnetinis laukas veikia jame esančius magnetinius (di)polius, judančias elektringąsias daleles. atitikmenys: angl. magnetic force vok. magnetische Kraft, f… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

магнитная сила — magnetinė jėga statusas T sritis Standartizacija ir metrologija apibrėžtis Magnetinių dipolių sąveikos jėga. atitikmenys: angl. magnetic force vok. magnetische Kraft, f rus. магнитная сила, f; сила магнитного поля, f pranc. force magnétique, f … Penkiakalbis aiškinamasis metrologijos terminų žodynas

магнитная сила — magnetinė jėga statusas T sritis fizika atitikmenys: angl. magnetic force vok. magnetische Kraft, f rus. магнитная сила, f pranc. force magnétique, f … Fizikos terminų žodynas

поверхностная магнитная сила — Сила, обусловленная магнитным полем и действующая на единицу поверхности материального объёма … Политехнический терминологический толковый словарь

сила Ампера — электромагнитная сила; сила Ампера; пондеромоторная сила; отрасл. магнитная сила Сила, обусловленная взаимодействием магнитного поля и электрического тока и действующая на единицу объёма проводящей среды … Политехнический терминологический толковый словарь

сила магнитного поля — magnetinė jėga statusas T sritis Standartizacija ir metrologija apibrėžtis Jėga, kuria magnetinis laukas veikia jame esančius magnetinius (di)polius, judančias elektringąsias daleles. atitikmenys: angl. magnetic force vok. magnetische Kraft, f… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

сила магнитного поля — magnetinė jėga statusas T sritis Standartizacija ir metrologija apibrėžtis Magnetinių dipolių sąveikos jėga. atitikmenys: angl. magnetic force vok. magnetische Kraft, f rus. магнитная сила, f; сила магнитного поля, f pranc. force magnétique, f … Penkiakalbis aiškinamasis metrologijos terminų žodynas

Магнитная жёсткость — Размерность L2MT 3I 1 Единицы измерения СИ вольт СГСЭ … Википедия

Ссылка на основную публикацию
Adblock detector