Формула для определения напряженности электрического поля

Формула для определения напряженности электрического поля

ЭЛЕКТРИЧЕСКИЙ ЗАРЯД. ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ.

Электрический заряд q — физическая величина, определяющая интенсивность электромагнитного взаимодействия.

Атомы состоят из ядер и электронов. В состав ядра входят положительно заряженные протоны и не имеющие заряда нейтроны. Электроны несут отрицательный заряд. Количество электронов в атоме равно числу протонов в ядре, поэтому в целом атом нейтрален.

Заряд любого тела: q = ±Ne , где е = 1,6*10 -19 Кл — элементарный или минимально возможный заряд (заряд электрона), N — число избыточных или недостающих электронов. В замкнутой системе алгебраическая сумма зарядов остается постоянной:

Точечный электрический заряд — заряженное тело, размеры которого во много раз меньше расстояния до другого наэлектризованного тела, взаимодействующего с ним.

Два неподвижных точечных электрических заряда в вакууме взаимодействуют с силами, направленными по прямой, соединяющей эти заряды; модули этих сил прямо пропорциональны произведению зарядов и обратно пропорциональны квадрату расстояния между ними:

где — электрическая постоянная.

где 12 — сила, действующая со стороны второго заряда на первый, а 21 — со стороны первого на второй.

ЭЛЕКТРИЧЕСКОЕ ПОЛЕ. НАПРЯЖЕННОСТЬ

Факт взаимодействия электрических зарядов на расстоянии можно объяснить наличием вокруг них электрического поля — материального объекта, непрерывного в пространстве и способного действовать на другие заряды.

Поле неподвижных электрических зарядов называют электростатическим.

Характеристикой поля является его напряженность.

Напряженность электрического поля в данной точке — это вектор, модуль которого равен отношению силы, действующей на точечный положительный заряд, к величине этого заряда, а направление совпадает с направлением силы.

Напряженность поля точечного заряда Q на расстоянии r от него равна

Принцип суперпозиции полей

Напряженность поля системы зарядов равна векторной сумме напряженностей полей каждого из зарядов системы:

Диэлектрическая проницаемость среды равна отношению напряженностей поля в вакууме и в веществе:

Она показывает во сколько раз вещество ослабляет поле. Закон Кулона для двух точечных зарядов q и Q , расположенных на расстоянии r в среде c диэлектрической проницаемостью :

Напряженность поля на расстоянии r от заряда Q равна

ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ ЗАРЯЖЕННОГО ТЕЛА В ОДНОРОДНОМ ЭЛЕКТРО-СТАТИЧЕСКОМ ПОЛЕ

Между двумя большими пластинами, заряженными противоположными знаками и расположенными параллельно, поместим точечный заряд q .

Так как электрическое поле между пластинами с напряженностью однородное, то на заряд во всех точках действует сила F = qE , которая при перемещении заряда на расстояние вдоль совершает работу

Эта работа не зависит от формы траектории, то есть при перемещении заряда q вдоль произвольной линии L работа будет такой же.

Работа электростатического поля по перемещению заряда не зависит от формы траектории, а определяется исключительно начальным и конечным состояниями системы. Она, как и в случае с полем сил тяжести, равна изменению потенциальной энергии, взятому с противоположным знаком:

Из сравнения с предыдущей формулой видно, что потенциальная энергия заряда в однородном электростатическом поле равна:

Потенциальная энергия зависит от выбора нулевого уровня и поэтому сама по себе не имеет глубокого смысла.

ПОТЕНЦИАЛ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ И НАПРЯЖЕНИЕ

Потенциальным называется поле, работа которого при переходе из одной точки поля в другую не зависит от формы траектории. Потенциальными являются поле силы тяжести и электростатическое поле.

Работа, совершаемая потенциальным полем, равна изменению потенциальной энергии системы, взятой с противоположным знаком:

Потенциал — отношение потенциальной энергии заряда в поле к величине этого заряда:

Потенциал однородного поля равен

где d — расстояние, отсчитываемое от некоторого нулевого уровня.

Потенциальная энергия взаимодействия заряда q с полем равна .

Поэтому работа поля по перемещению заряда из точки с потенциалом φ1 в точку с потенциалом φ2 составляет:

Читайте также:  Лак для ремонта паркетной доски

Величина называется разностью потенциалов или напряжением.

Напряжение или разность потенциалов между двумя точками — это отношение работы электрического поля по перемещению заряда из начальной точки в конечную к величине этого заряда:

НАПРЯЖЕННОСТЬ ПОЛЯ И РАЗНОСТЬ ПОТЕНЦИАЛОВ

При перемещении заряда q вдоль силовой линии электрического поля напряженностью на расстояние Δ d поле совершает работу

Так как по определению, то получаем:

Отсюда и напряженность электрического поля равна

Итак, напряженность электрического поля равна изменению потенциала при перемещении вдоль силовой линии на единицу длины.

Если положительный заряд перемещается в направлении силовой линии, то направление действия силы совпадает с направлением перемещения, и работа поля положительна:

Тогда , то есть напряженность направлена в сторону убывания потенциала.

Напряженность измеряют в вольтах на метр:

Напряженность поля равна 1 В/м, если напряжение между двумя точками силовой линии, расположенными на расстоянии 1 м, равна 1 В.

Если независимым образом измерять заряд Q , сообщаемый телу, и его потенциал φ, то можно обнаружить, что они прямо пропорциональны друг другу:

Величина С характеризует способность проводника накапливать электрический заряд и называется электрической емкостью. Электроемкость проводника зависит от его размеров, формы, а также электрических свойств среды.

Электроёмкостъ двух проводников — отношение заряда одного из них к разности потенциалов между ними:

Емкость тела равно 1 Ф , если при сообщении ему заряда 1 Кл оно приобретает потенциал 1 В.

Конденсатор — два проводника, разделенные диэлектриком, служащие для накопления электрического заряда. Под зарядом конденсатора понимают модуль заряда одной из его пластин или обкладок.

Способность конденсатора накапливать заряд характеризуется электроемкостью, которая равна отношению заряда конденсатора к напряжению:

Емкость конденсатора равна 1 Ф, если при напряжении 1 В его заряд равен 1 Кл.

Емкость плоского конденсатора прямо пропорциональна площади пластин S , диэлектрической проницаемости среды , и обратно пропорциональна расстоянию между пластинами d:

ЭНЕРГИЯ ЗАРЯЖЕННОГО КОНДЕНСАТОРА.

Точные эксперименты показывают, что W=CU 2 /2

Так как q = CU , то

Плотность энергии электрического поля

где V = Sd — объем, занимаемый полем внутри конденсатора. Учитывая, что емкость плоского конденсатора

а напряжение на его обкладках U=Ed

Пример. Электрон, двигаясь в электрическом поле из точки 1 через точку 2, увеличил свою скорость от 1000 до 3000 км/с. Определите разность потенциалов между точками 1 и 2.

Так как электрон увеличил свою скорость, то ускорение и сила Кулона сонаправлены со скоростью. Значит, электрон движется против силовых линий поля. Изменение кинетической энергии электрона равно работе поля :

Ответ: разность потенциалов равна — 22,7 В.

Этим параметром обозначают силовое воздействие на заряд в определенной точке пространства. Напряженность учитывают в процессах распространения радиоволн, при конструировании электродвигателей, для решения других задач. В данной публикации приведены теоретические знания и методики расчетов.

Напряжённость электрического поля в классической электродинамике

Для лучшего понимания темы необходимо напомнить несколько базовых определений. Существуют отрицательные и положительные электрические заряды. Каждый из них не зависит от системы координат, что подразумевает отсутствие влияния скорости. В изолированном объеме сумма зарядов не изменяется. Базовой величиной считают Кулон, который соответствует прохождению тока через единичную площадь сечения проводника за одну секунду.

Электрическое поле:

  • создается зарядами;
  • распространяется со скоростью света;
  • не ограничено в свободном пространстве.

Описывает напряженность электрического поля формула с векторными составляющими:

где:

  • E – это вектор напряженности, который зависит от координат в пространстве по осям Х, Y, Z и времени;
  • F – сила, оказывающая воздействие на единичный точечный заряд q0.

Вместе с вектором магнитной индукции напряженность (Е) формирует электромагнитное поле. Суммарное воздействие сил образует тензор. Вместе с зарядом это главные параметры электродинамики.

Читайте также:  Как почистить сифон душевой кабины

Как направлен вектор электрического поля

Вектор поля надо направить в сторону от положительного заряда и в обратном направлении – к отрицательному. Это определение справедливо для одной точки. Так как идеальные условия отсутствуют, в реальной ситуации приходится учитывать взаимодействие зарядов и соответствующее образование силовых линий.

Поле не является однородным, что демонстрируют с помощью разных расстояний между отдельными линиями. В примере с пластинами близкое расположение параллельных проводников позволяет обеспечить одинаковую напряженность в рабочей зоне. Все силовые линии бесконечные. Они начинаются на положительном заряде и заканчиваются на отрицательном. Таким образом, направление вектора напряженности будет всегда в сторону уменьшения потенциала.

Сила действия электромагнитного поля на заряженные частицы

Полное силовое воздействие на частицу с учетом магнитной компоненты можно определить с помощью расширенной формулы:

Здесь «*» обозначает умножение векторов скорости (v) заряженной частицы и магнитной индукции (B).

Эта формула напряженности поля предполагает единичный заряд точечного объекта. Вычисленные параметры аппроксимируют на крупные тела с применением соответствующих математических формул.

Уравнения Максвелла

Этими уравнениями описывают трансформацию электрической и магнитной составляющих полей с учетом плотностей тока (j) и заряда (p). Многие типовые задачи вполне можно решить с их помощью. Для исследования взаимного воздействия нескольких систем удобнее пользоваться матричным или интегральным представлением.

Закон Кулона

С помощью этих формул показано, как найти напряженность при взаимодействии точечных зарядов. Для исключения лишних влияний подразумевается размещение в безвоздушной среде с электрической изоляцией от окружающего пространства. В таких условиях сила будет увеличиваться прямо пропорционально величине зарядов и обратно – квадрату дистанции между данными точками.

Закон обратных квадратов

Это соотношение – производная от рассмотренного выше закона Кулона. В идеальных условиях сила воздействия будет уменьшаться обратно пропорционально квадрату расстояния между зарядами.

«Материальные уравнения»

Для решения многих практических задач вполне достаточна ограниченная точность. С помощью «материальных» уравнений выполняют расчеты различных электрических цепей.

Уместный пример – закон Ома. Он был создан в ходе измерения электрических параметров. В начальном виде формула (Х=П/L+B) состояла из следующих компонентов:

  • Х – показания измерительного устройства (гальванометра), включенного в разрыв электрической цепи;
  • П – параметры источника питания, заставляющие стрелку прибора отклоняться на определенный угол;
  • L – длина соединительных проводов;
  • B – общие свойства установки.

Несложно догадаться, что в современном представлении это известный закон, показывающий взаимное влияние основных параметров полной электрической цепи:

где:

  • I – ток;
  • E – ЭДС (напряжение);
  • R и r – сопротивление подключенных компонентов и самого источника питания, соответственно.

Связь с потенциалами

Для отображения этих компонентов удобно пользоваться векторным представлением. Сначала можно выразить работу (А), которую совершает электрическое поле (E) при перемещении заряда (q) на определенное расстояние (L):

Далее ту же величину отображают через разницу потенциалов:

Итоговая формула:

Точнее будет использовать векторное выражение напряженности и передвижения.

Электростатика

Этот раздел электродинамики описывает частный случай, когда заряженные тела находятся в статичном состоянии. Такая ситуация значительно упрощает расчеты. Для практического примера можно создать электростатический конденсатор.

Устанавливают две плоскости одинаковой размерности параллельно на небольшом расстоянии, разделяют слоем диэлектрика. Если создать разницу потенциалов, между поверхностями образуется поле. В такой конструкции накапливается электрический заряд. Какой будет емкость, можно узнать с помощью этой формулы:

где:

  • e – проницаемость диэлектрика;
  • e0 – электрическая постоянная (8,85*10-12 Ф/м);
  • S – площадь пластин;
  • D – расстояние между ними.
Читайте также:  Выкройка детского платья трапеция с рукавом

Чтобы зарядить конденсатор до нужной емкости, надо затратить энергию W=(e*e0*E2/2)*S*D. На рисунке показано, как изменять рабочие параметры сборки при последовательном и параллельном соединении модулей.

Теорема Гаусса

Эта теорема определяет пропорциональность потока вектора напряженности электрического поля (Ф) заряду (Q), который заключен в произвольную поверхность замкнутого типа:

Напряжённость электрического поля точечного заряда

В этом случае можно пользоваться рассмотренным выше законом Кулона. В следующих разделах представлены формулы для вычисления в разных системах единиц.

В единицах СИ

В этой системе базовой выбрана сила тока, поэтому кулон является производной величиной.

Основная формула:

Здесь коэффициент k=1/(4π*e0).

Для системы СГС

Здесь, как и в предыдущем примере, выбран единичный заряд – «точка». Основные правила характеризуют физические процессы аналогично. Разница лишь в постоянных величинах. В данном случае коэффициент k обратно пропорционален диэлектрической проницаемости (е) среды.

Напряженность электрического поля произвольного распределения зарядов

В этом варианте для получения результата надо сложить вектора каждого заряда:

Чтобы обеспечить непрерывность линии напряженности, берут интеграл соответствующей области. Построить распределение силовых линий можно с помощью расчета перемещения вектора по всем точкам.

Системы единиц

Отмеченные ниже различия надо учитывать, чтобы корректно пользоваться формулами, справочными данными. В современной системе СИ напряженность измеряется в вольтах на метр. Однако до сих пор сохраняется альтернативный вариант (СГС), точнее две подсистемы: СГСМ и СГСЭ. Измерять параметры без ошибок помогут следующие данные.

Таблица пересчета напряженности

Система Значение Единицы
СИ 1 Вольт/метр (Ньютон/Кулон)
СГСМ 106 Абвольт/см
СГСЭ 10^6с^-1 Статвольт/см

Видео

Для расчета Напряженности электрического поля внутри однородного и изотропного диэлектрика необходимо полученные формулы для индукции разделить на например:

1) для точечного заряда или равномерно заряженного шара (за пределами объема шара)

2) для бесконечно длинной равномерно заряженной нити

3) для бесконечной равномерно заряженной плоскости

4) между обкладками плоского конденсатора

5) на оси равномерно заряженного тонкого кольца радиус)

6) на оси равномерно заряженного диска (R — радиус)

где

В безграничном однородном, изотропном и линейном (см. § 2) диэлектрике можно сформулировать теорему Остроградского — Гаусса и для напряженности Е:

Электрическое поле графически изображается силовыми линиями индукции (или напряженности), вдоль которых вектор (или направлен по касательной. У отдельного точечного заряда в вакууме (или в однородном и изотропном диэлектрике) силовые линии направлены по радиусам. Условились величину индукции (или напряженности изображать числом линий, проводимых через единицу площади, перпендикулярной этим линиям. Например, через площадку (см. рис. II 1.9) проводят силовых линий. Ввиду этого число силовых линий, проведенных через данную площадку, оказывается равным потоку электрической индукции через эту площадку; тогда, согласно теореме Остроградского — Гаусса, от каждого точечного заряда следует провести силовых линий. В изотропной среде силовые линии векторов будут совпадать, отличаясь только числом линий, проводимых через единичные площадки; в анйзотропной среде силовые линии этих векторов не будут совпадать,

Если заряженная частица, имеющая заряд движется в электрическом поле, то в каждой точке поля действующая на нее сцла будет направлена по касательной к силовой линии

напряженности проведенной через эту точку. По этой же касательной будет направлено и ускорение движения, однако скорость частицы может составлять любой угол с силовой линией. Очевидно, что направление скорости частицы будет совпадать с направлением силовой линии электрического поля только в частном случае, когда эти линии — прямые и, кроме того, начальная скорость частицы была ориентирована вдоль этих линий.

Ссылка на основную публикацию
Adblock detector