Эпра навигатор 2х36 схема

Эпра навигатор 2х36 схема

Люминесцентная лампа (ЛЛ) представляет собой стеклянную трубку, заполненную инертным газом (Ar, Ne, Kr) с добавлением небольшого количества ртути. На концах трубки имеются металлические электроды для подачи напряжения, электрическое поле которого приводит к пробою газа, возникновению тлеющего разряда и появлению электрического тока в цепи. Свечение газового разряда бледно-голубого оттенка, в видимом световом диапазоне очень слабое.

Но в результате электрического разряда большая часть энергии переходит в невидимый, ультрафиолетовый диапазон, кванты которого, попадая в фосфорсодержащие составы (люминофорные покрытия) вызывают свечение в видимой области спектра. Меняя химический состав люминофора, получают различные цвета свечения: для ламп дневного света (ЛДС) разработаны различные оттенки белого цвета, а для освещения в декоративных целях можно выбрать лампы иного цвета. Изобретение и массовый выпуск люминесцентных ламп – это шаг вперед по сравнению с малоэффективными лампами накаливания.

Для чего нужен балласт?

Ток в газовом разряде растет лавинообразно, что приводит к резкому падению сопротивления. Для того чтобы электроды люминесцентной лампы не вышли из строя от перегрева, последовательно включается дополнительная нагрузка, ограничивающая величину тока, так называемый балластник. Иногда для его обозначения употребляют термин дроссель.

Используются два вида балластников: электромагнитный и электронный. Электромагнитный балласт имеет классическую, трансформаторную комплектацию: медный провод, металлические пластины. В электронных балластниках (electronic ballast) применяются электронные компоненты: диоды, динисторы, транзисторы, микросхемы.


В случае отсутствия возможности быстрой замены вышедшего из строя ЭПРА можно попытаться отремонтировать балластник самостоятельно. Для этого выбираем следующую последовательность действий для устранения неисправности:

  • для начала проверяется целостность предохранителя. Эта поломка часто встречается из-за перегрузки (перенапряжения) в сети 220 вольт;
  • далее производится визуальный осмотр электронных компонентов: диодов, резисторов, транзисторов, конденсаторов, трансформаторов, дросселей;
  • в случае обнаружения характерного почернения детали или платы ремонт производится с помощью замены на исправный элемент. Как проверить своими руками неисправный диод или транзистор, имея в наличии обычный мультиметр, хорошо известно любому пользователю с техническим образованием;
  • может оказаться, что стоимость деталей для замены будет выше или сопоставима со стоимостью нового ЭПРА. В таком случае лучше не тратить время на ремонт, а подобрать близкую по параметрам замену.

ЭПРА для компактных ЛДС

Сравнительно недавно стали широко использоваться в быту люминесцентные энергосберегающие лампы, адаптированные под стандартные патроны для простых ламп накаливания – Е27, Е14, Е40. В этих устройствах электронные балласты находятся внутри патрона, поэтому ремонт этих ЭПРА теоретически возможен, но на практике проще купить новую лампу.

На фото показан пример такой лампы марки OSRAM, мощностью 21 ватт. Следует заметить, что в настоящее время позиции этой инновационной технологии постепенно занимают аналогичные лампы со светодиодными источниками. Полупроводниковая технология, непрерывно совершенствуясь, позволяет быстрыми темпами достигнуть цены на ЛДС, стоимость которых остается практически неизменной.

Как изготовить светильник своими руками?

Сделать простейший светильник из двух ламп можно следующим образом:

  • выбираем подходящие по цветовой температуре (оттенку белого цвета) лампы по 36 Вт;
  • изготавливаем корпус из материала, который не воспламенится. Можно задействовать корпус от старого светильника. Подбираем ЭПРА под данную мощность. На маркировке должно быть обозначение 2 х 36;
  • подбираем к лампам 4 патрона с маркировкой G13 (зазор между электродами составляет 13 мм), монтажный провод и саморезы;
  • патроны необходимо закрепить на корпусе;
  • место установки ЭПРА выбирают из соображения минимизации нагрева от работающих ламп;
  • патроны подключаются к цоколям ЛДС;
  • для предохранения ламп от механического воздействия желательно установить прозрачный или матовый защитный колпак;
  • светильник закрепляется на потолке и подключается к сети питания 220 В.


Рис.1. Схема универсального ЭПРА с теплым стартом на ICB1FL02G

Основные характеристики:
Входное переменное напряжение, В………………………………110÷250
Максимальный потребляемый ток (4 лампы по 18Вт), мА………330÷350
Коэффициент мощности (4 лампы по 18Вт), не менее. …………0,98
Коэффициент пульсаций светового потока не более, %. 5
КПД не менее………………………………. 0,9
Частота предварительного прогрева, кГц………………………….55
Частота розжига, кГц………………………………………………..48
Рабочая частота, кГц………………………………………………. 41

Балласт построен на специализированной микросхеме-контроллере электронного балласта люминесцентных ламп – ICB1FL02G, разработанной фирмой Infineon, подробное описание работы микросхемы в [1]. ICB1FL02G по сравнению с IR2166 и IR2168 более функциональна, требует меньшего числа внешних элементов и как показала практика, более стабильна и надежна (это субъективное мнение автора). Работу схемы можно разделить на три этапа: предварительный прогрев катодов лампы, розжиг и рабочий режим. Предварительный прогрев реализован следующим образом. Сразу же после включения, тактовый генератор микросхемы начинает работать на частоте около 125кГц. Через 10мс его частота плавно уменьшится до 65кГц – это частота предварительного прогрева, которая задается резистором R13. Это значение гораздо выше резонансной частоты выходного балластного контура L2С16, поэтому, прикладываемое к катодам ламп напряжение будет недостаточным для их розжига. Начинается предварительный прогрев ламп, длительность которого задается резистором R14 и может быть выбрана от 0 до 2с (в данном случае выбрана 1с.). В течение этого времени частота остается неизменной. За время предварительного прогрева катоды ламп достаточно прогреются высокочастотным током, а газ в лампах начнет частично ионизироваться. В итоге последующий розжиг пройдет в менее стрессовом режиме для нитей ламп и с меньшими бросками тока через силовые ключи VT2, VT3. Функция предварительного прогрева значительно, иногда в несколько раз, увеличивает срок службы люминесцентной лампы. По истечении времени предварительного прогрева, в следующие 40 мс, частота тактового генератора микросхемы снова начнет понижаться. По мере ее приближения к резонансной частоте контура L2С16, напряжение, прикладываемое с обкладок конденсатора С16 к катодам ламп, начнет резко возрастать и при достижении 600÷800В произойдет розжиг. Если в этот момент времени напряжение на токовом резисторе R23 достигнет порога 0,8В, а это может произойти, например, при попытке включить балласт без нагрузки или при неисправности одной из ламп, контроллер микросхемы прекратит дальнейшее снижение частоты преобразователя и вновь начнет повышать ее, что в свою очередь вызовет уменьшение напряжения на С16. Это делается с целью избежать чрезмерного скачка тока и напряжения на выходе преобразователя. При уменьшении падения напряжения ниже 0,8В на R23, частота вновь начнет понижаться. Этот процесс может повториться несколько раз, пока не будет получен сигнал об успешном розжиге. Сигналом об успешном розжиге служит появление синусоидального тока амплитудой не более 2,5мА на выв. 13 D1 и напряжения трапецеидальной формы размахом не более 3,2В на выв.12 D1. Максимальное время розжига может составлять 235мс. В случае неудачного розжига ламп, микросхема перейдет в аварийный режим и прекратит коммутацию выходных ключей VT2 и VT3. При успешном розжиге, D1 перейдет в рабочий режим, частота тактового генератора опустится до рабочего значения, которое задается резистором R12. Все три этапа работы балласта: прогрев, розжиг и рабочий режим иллюстрирует осциллограмма на рис.2 (осциллограф подключен к контактам 3, 9 разъема XT2). На рис.3 осциллограмма напряжения в рабочем установившемся режиме с подключенными 4-мя 18Вт лампами.

Читайте также:  Вездеходы на шинах низкого давления вологда


Рис.2. Прогрев, розжиг и рабочий режим


Рис.3. Рабочий режим

В рабочем режиме активируются дополнительные защитные функции: EOL (End Of Life) – окончание срока службы лампы, защита от работы в емкостном режиме, защита от выпрямительного эффекта ламп. В случае резкого увеличения тока через лампу, что может произойти к окончанию срока ее службы, увеличится до 215мкА ток в цепи: плюс источника питания, R25…R29, нить лампы, R20…R17, внутренний датчик тока D1. Это вызовет срабатывание защиты EOL и балласт отключится. Если положительный и отрицательный полупериоды тока, текущего по этой цепи не равны по амплитуде, это означает, что лампа работает в выпрямительном режиме. То есть ток через лампу в одну сторону больше, чем в другую. Такой эффект вызывается преждевременным износом одного из катодов лампы. В этом случае балласт также переходит в аварийный режим. Если во время работы балласта нарушится контакт в цепи ламп, например, неисправный ламподержатель или перегорит одна из нитей, сопротивление цепи резко возрастет и выходной каскад перейдет в емкостной режим работы, что в свою очередь может вызвать резонанс. В этом случае напряжение на выв.12 D1 превысит уровень 1,6В и вызовет срабатывание защиты, балласт отключится. Также выводы 13 (LVS – Lamp Voltage Sense) и 12 (Res–restart) D1 служат для контроля подключения ламп в течение всего времени работы балласта. Если во время работы балласта вывернуть одну из ламп – балласт отключится.

Активный корректор мощности собран на элементах T1,VT1,VD2,C3. Его назначение – максимально приблизить форму потребляемого тока к форме напряжения, тем самым свести к минимуму реактивную мощность. Подробно принцип его работы описан в [1] и[2]. Особенность данного корректора – возможность работы как в режиме критической проводимости (Critical Conduction Mode – CCM), так и в режиме прерывистой проводимости (Discontinuous Conduction Mode – DCM). Делитель R8…R11С5 служит для контроля мгновенного значения напряжения питания и определения времени закрытия VT1. Вторичная обмотка Т1, подключенная через ограничивающий резистор R6 к выв.7 D1, необходима для определения момента, когда ток через Т1 достигнет нулевого значения. Как только это произойдет, на затвор VT1 будет подан открывающий импульс. Обе обмотки Т1 должны быть обязательно синфазны.

Питание микросхемы в первый момент времени осуществляется от цепочки R1…R3. В дальнейшем – от выходного каскада через стабилизатор С9С10R24VD4VD5C8.

Для подключения к балласту 4-х ламп, производитель микросхемы рекомендует использовать два выходных балластных контура, включенных параллельно, в каждом контуре по две, последовательно соединенные лампы [1]. Но тогда возникает следующая проблема. При даже незначительном разбросе параметров выходного LC-контура пары ламп могут разжигаться неодновременно, что не очень приятно для восприятия. С другой стороны, четыре последовательно соединенные лампы разжечь довольно проблематично, так как они не успевают достаточно прогреться во время предварительного прогрева и для розжига потребуется гораздо большая энергия. К тому же нельзя забывать и о потерях на соединительных проводах. Решением стало оставить один выходной контур, но добавить маломощный вспомогательный понижающий трансформатор Т2. Он компенсирует потери в местах соединения ламп, улучшает прогрев ламп и облегчает их розжиг. Экспериментально было установлено, что мощность Т2 должна составлять 8÷10% от общей мощности ламп и коэффициент трансформации должен быть 20÷30. При подключении к балласту ламп 1х18, 2х18, 1х36, трансформатор Т2 и разделительные конденсаторы С17, С20 и С21 необходимо удалить, чтобы избежать приложения к лампам излишней мощности.

Читайте также:  Течет труба под ванной что делать

В документации [1] приводится расчет всех основных элементов балласта, за исключением расчета выходного контура L2C16. Элементы L2 и С16 рассчитывались следующим образом. Максимальная мощность ламп (4х18 или 2х36) составляет P=72Вт, рабочая частота выбрана f = 41кГц, частота розжига fign= 48кГц [1], с использованием теплого старта оптимальное напряжение розжига Uign700В. Из соотношения энергии получим:

Из имеющихся был выбран конденсатор 6,8 нФ. Теперь определяем индуктивность L2:

С другой стороны индуктивность балластного дросселя должна соответствовать условию:

Uin напряжение питания; Ulamp – рабочее напряжение на лампах, т.к. рабочее напряжение 18Вт лампы составляет около 56В, то Ulamp=4*56B=224B; ton – время открытого ключа, при f = 41кГц, ton 11,5мкс (согласно [1]); Ilamp 0,33A– рабочий ток ламп. Отсюда:

Определяем максимальный ток дросселя L2, он будет равен току конденсатора С16 в момент резонанса:

Выбираем подходящий по габаритной мощности сердечник, например EV25/13/13.

Оценим требуемый зазор g (mm):

Примем индукцию В = 0,22Тл. Имеем:

Рассчитаем число витков N дросселя L2:

где: AL – индуктивность на виток (сердечник с зазором), (Г); AL – индуктивность на виток (сердечник без зазора, справоч.), ); le – длина средней линии сердечника, (мм); µe – начальная магнитная проницаемость сердечника, справоч. Для сердечника EV25/13/13, материал N87: AL = 2400 нГ, le = 59 мм; µe = 1520. Отсюда:

Проверим максимальную индукцию:

Дроссель намотан проводом 4х0,2мм. При возможности обмотку желательно разделить на секции.

Печатная плата балласта односторонняя, все выводные элементы на верхней стороне, smd – на нижней. Чертеж печатной платы на рис.4, рис.5. 3D модель печатной платы на рис.6. Фото готового устройства на рис.7, рис.8. Конденсатор С16 – металлопленочный, на напряжение 1600В. С17, С19, С10 – металлопленочные или дисковые керамические на 1000В. С20, С21 – 100В. Диоды VD2, VD3 – быстродействующие на обратное напряжение не менее 600В. VT1…VT3 можно заменить на SPP03N60C3 или аналогичные. Трансформатор Т1 намотан на сердечнике Е25/13/7, материал N27, немагнитный зазор 1.6мм. Первичная обмотка содержит 184 витка проводом 4х0.2мм, вторичная – 14 витков проводом 0.3мм. Т2 намотан на сердечнике Е16/8/5, материал N27, без зазора. Обмотка 1-2 содержит 208 витков; обмотки 11-14, 6-7, 10-13 по 24 витка; обмотки 4-5, 8-9 по 12 витков. Диаметр провода всех обмоток Т2 – 0.18мм. Частотозадающие резисторы R12…R14 желательно выбрать с допуском 0.5÷1%. Помехоподавляющий дроссель L1, любой стандартный с индуктивностью 20мГн и рассчитанный на ток не менее 0,5А. Правильно собранное устройство обычно начинает работать сразу и никаких настроек не требуется.


Рис.4. Печатная плата, верхняя сторона.


Рис.5. Печатная плата, нижняя сторона (отзеркалено).


Рис.6. 3D модель печатной платы (Altium Designer).


Рис.7. Внешний вид готового балласта.


Рис.8. Внешний вид готового балласта.

В данной статье описывается ремонт Электронного балласта EB-2×36 для люминесцентных ламп (Electronic Ballast EB-2×36).

Конечно вещь не такая дорогая чтобы отдавать её в ремонт, стоимость самого дешевого варианта примерно 350-400 рублей, но когда выходят из строя их пачками начинаешь задумываться о её ремонте. Поэтому есть смысл купить вещь немного по дороже 500-700 рублей.

Поступил балласт с неисправностью не включения ламп дневного света (люминесцентных ламп) установленных в плафоне две штуки по 36Вт каждая.

При тщательном визуальном осмотре горелых элементов не выявлено. Началась тотальная проверка ключевых элементов, в первую очередь это полупроводники (транзисторы и диоды).

Сразу скажу, что это не 100% схема данного электронного балласта, но схема очень похоже.

Проверка элементов тестером ничего не выявила. В схеме установлены NPN транзисторы MJE13005. Скачать PDF MJE13005 .

Краткое описание:

Symbol Parameter Value Unit

VCEV — Collector-Emitter Voltage 700 V

VCEO — Collector-Emitter Voltage (IB = 0) 400 V

VEBO — Emitter-Base Voltage (IC = 0) 9 V

IC — Collector Current 4 A

ICM — Collector Peak Current 8 A

IB — Base Current 2 A

IBM — Base Peak Current 4 A

Ptot — Total Power Dissipation at Tcase ≤ 25 o C 75 W

Tstg — Storage Temperature -65 to +150 o C

Tj — Max. Operating Junction Temperature 150 o C

В схеме эти транзисторы прозваниваются в короткую между базой и эмиттером, показывая несколько Ом. Это вызвано включение в схему элементов с низкоомным содержанием. Но для проверки всё равно были выпаены и проверены заново. Транзисторы MJE13005 оказались полностью исправные.

При последующем поиске неисправности удалось обнаружить неисправный элемент, им оказался динистор DB3. Проверить с помощью тестера его не реально. На его корпусе с помощью лупы была обнаружена небольшая трещина.

«>

Ссылка на основную публикацию
Adblock detector